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A general approximate solution is obtained for problems of heat transfer associated 
with a flow of micropolar fluid in a plane channel with boundary conditions of the 
first and second kind and its accuracy is determined. 

There have been a large number of papers devoted to the solution of the problem of 
steady-state forced-convection heat transfer in channels. However, even in the case where 
several simplifying assumptions are made (the flow is assumed to be steady and stabilized, 
and the physical properties of the fluid constant; compressibility, energy dissipation, 
axial heat conduction, and also mass forces and moments, are neglected) it is difficult to 
obtain an analytical solution suitable for practical application. With the above assump- 
tions the problem for cylindrical and plane channels reduces to the solution, with appro- 
priate thermal boundary conditions, of the energy equation in the following form: 

where 

aT a a (x~,_10T ) (1) 
a-T$' 

m = t 1 foraplane channel, 
[ 2 fora cylindricalchannel. 

Equat ion (1) ,  s a t i s f y i n g  p r e s c r i b e d  boundary c o n d i t i o n s ,  i s  u s u a l l y  solved by the  method 
of s e p a r a t i o n  of  the  v a r i a b l e s ,  where 

0 = C ~ * ' ~  (x~) (2) 

and the  problem reduces  to f i n d i n g  the  e igenva lues  and e i g e n f u n c t i o n s  from the  equa t ion  and 
boundary c o n d i t i o n s  fo r  ~(R2), and a l so  the  c o n s t a n t  c o e f f i c i e n t s  C cor responding  to them. 
In exp re s s ion  (2) ,  O, R1, and R2 are  the  v a r i a b l e s  T, x l ,  and x2 in  d imens ion le s s  form, and 
the  form of  which depends on the  channel  geometry and boundary c o n d i t i o n s .  

The solution of the equation for function ~(~2) is extended by representing it as a 
power series [i]. In this case, however, we do not obtain a solution in explicit form suit- 
able for direct practical application. Moreover, in the investigation of heat transfer in 
a micropolar fluid, the hydrodynamics of which is largely determined by the microrotation 
of its particles [2], the indicated method leads to very laborious calculations. In [3] the 
asymptotic WKB method was used to construct the solution of Eq. (I) with thermal boundary 
conditions of the first kind for cases of flow of a Newtonian fluid in cylindrical and plane 
channels. In [4, 5] solutions were obtained for similar problems with thermal boundary con- 
ditions of the first and second kinds for a flow of micropolar fluid in channels. Smol'skii 
et al. [6] effectively used the WKB approximation to investigate heat transfer in viscoplas- 
tic media. 

In papers devoted to the use of the WKB method for the solution of problems of type (i), 
however, the error associated with calculation of the main heat-transfer characteristics 
(the temperature T and heat flux on the wall qw) was not estimated. Hence, the specific 
regions of the coordinate x2 in which the use of the obtained expressions ensured minimum 
error were not indicated. We will consider these questions and will also construct a general 
solution of problems with thermal boundary conditions of the first and second kinds for the 
case of flow of a micropolar fluid in a plane channel. 
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Fig. i. Cross-sectional temperature distribution for ~ = 
0.i: i) 8=0.83, k=0.1; 2) 8=0 (the continuous curves 
are the solution in the form of a power series, the dashed 
curves are the solution by the WKB method). 

Fig. 2. Heat flux on wall along channel: i) 8 = 0.83, k = 
0.i; 2) 0.83, 3; 3) 0.83, 8; 4) 8=0. 

Let an incompressible micropolar fluid flow under the action of a constant pressure 
gradient dp/dx between two stationary parallel plates, the distance between which is 2h, 
If the y axis of the Cartesian coordinate system is perpendicular to the channel planes, 
the nonzero components of the velocity vector ~ and microrotation vector ~ will be v x = vx(y) , 
v z = v z (y) �9 

Convective heat transfer in a micropolar fluid for particular cases of hydrodynamic 
boundary conditions for the vector ~ has been investigated. This involved the use of total 
no-slip conditions, when Vz(• = 0 on the stationary walls [4], also the conditions for 
absence of instantaneous stresses on the surfaces, when (dvz/dy)y=• = 0 [5]. We consider 
more general hydrodynamic boundary conditions 

vx(-l-h)=O, v~(=hh)-- ~ ( dvx I (0~<~:<I),  (3) 
2 \ dy  /u=• 

f o r  which  t h e  v e l o c i t y  p r o f i l e  i s  w r i t t e n  as  [7] 

Here 

3 N[ y2 cthk ( chky/h 
V x =  ~Vm 1 - -  h--~--I-8--~ chk 

] 3 N (4) 
1 = vm t(Wh). 

vm=N 2h 2 ( - -  dp/dx)  ; 8 - -  2• (1 - -  o~) ; k 2 _  - __2a "-b ~ ~ h~" 

3 (2~ + • 2 (~ + • - -  u= ~ + ~ V 

We introduce the following dimensionless variables: 

I x y :  Y ,  whem Pe = 2vNmh 
: Pe 2 h '  a ' 

Substituting (4) 

T--Tw 
for boundary condition Tw---- cons/, 

0= 
T - -  To 

2qwh ~ for boundary condition qw----- const. 

in (i) with m= i and using (5), we obtain 

3 r6) ae 

8 & - 

(5) 

(6) 
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We consider particular cases of thermal boundary conditions of the first kind when T w = 
const 

e = o ,  7,>o, ~,~__+l; oe - o ,  
a~ (7) 

,~>0, .q=O; 0 : - 1 ,  x==O, - -  l~ .q - .~ l  

and of the second kind when qw = const 

The s o l u t i o n  of problems of convec t i ve  hea t  t r a s  in  a mic ropo la r  f l u i d  wi th  the  
hydrodynamic boundary c o n d i t i o n s  \(3) i n s t ead  of t h e i r  p a r t i c u l a r  cases  l eads  to f i n a l  expres -  
s ions  s i m i l a r  to those  found in  [4] and [5] ,  but  w i th  r ede te rmined  c o n s t a n t s .  Hence, a 
comparison of the  s o l u t i o n s  of Eq. (6) wi th  thermal  boundary c o n d i t i o n s  of the f i r s t  [4] 
and second [5] k inds  enables  us to c o n s t r u c t  t h e i r  gene ra l  form: 

o (x, gOst (z + c,,Y,, (,7) exp (-- _8 1, 
, ,=g 3 ? 

Vn(? )=M[ [ (~ l ) ] - I / 4cos (~n~V ' [ ' - ~d~ )  for O < . y < l ,  
0 

Y.(z) = M (--1)'~/m ~'~ 3 za/2 (z---- 1--?) for .q---*l, 

tn  ra 

c.=(_l)~176 (~'---~), 

- -  3F_, [ ] e,st (x, y) = 2.~F-' + --g- (1 - -  g) ~/2 --  -6-~7' + K 2k~.ehkeh/,,y -I- c, 

9~ [ 13 1 ( 5  3~ ~ 4 ) t h k  
c -  8~- 2 - ~ + - ~  12 2k~ 2 ~ 

_ k _ ~ ( l +  1 ) +  4 2 + ~ 13] 
k ~ 3k z 2k ~" ch ~ k 60 

p " = l - -  6 o" 6 c t h k  F = I  _r 3 6 1 - - k c t h k  
2 k 2 k ~ 

1 

0 

1 ~  g = 0, m = --3-, b = 1.784, ~ --- .  n + - -  T w = cons t ,  

g =  1, m = - - @ ,  b=0.971, e .=  n+ --qw=const. 
q) 

(9) 

(io) 

(11) 

From the obtained analytical solution it is relatively easy to calculate the tempera- 
ture field in a micropolar fluid flowing in a plane channel. Expressions obtained with 
Tw= const are particularly suitable for calculation. Since in the given solution the expres- 
sions for Yn(y) are asymptotic (the assumption Zn§ ~ was used), for practical application 
its accuracy has to be estimated. In addition, the regions of the cross section in which 
expressions (i0) and (Ii) are most accurate must be determined. For this purpose problems 
(6), (7) and (6), (8) were solved by representation of function Y(~) in the form of a power 

series [i] 

y (.~) = ~ b~,. (0 ~?". (12) 
r n = O  
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The eigenva!ues of the Sturm--Liouville 

tion of the equations 

~ b2m (e) ---- 0 for boundary conditions (q), 
ra--~O 

~2mb,  m 0 for boundary conditions (8), (~) 
m~O 

in which the coefficients b2m were determined from the following recurrence relations; 

bo = 1, 
82 

b 4 : - - - - ~  b , 2 ( 1 - - 6 ) - - b o - ~ - ~ { b 2 + - ~ -  bo , 

problem for this function were found from the solu- 

(13) 

~ b ~  ~ ~ (2m + 2)(2m + i) chk (-~p) 1 b2m-2p (m ~ 1). 

The solution of Eqs. (13) gives us an infinite set of values of ~n- Using the recurrence 
relations to substitute any value of si in (12), we obtain the eigenfunction Yi(Y). It 
can be shown that, as for a Newtonian fluid, in this problem the coefficients C n in (9) 
are determined from the expressions 

2 C n - = - - ( O y )  for boundary conditions (q), 

1 Cn ~ 02 Y for boundary conditions (8). 

The general solution of (9) was calculated in the ranges 0.02-<~-<-0.6 and 0-<~-<l on 
a Minsk-32 computer, which gave values of | correct to the fourth decimal place. A numeri- 
cal comparison of the obtained solution with the asymptotic solution enables us to estimate 
the relative error 6 a associated with the use of the approximate WKB method. The considered 
ranges of the parameters characterizing the non-Newtonian behavior of a micropolar fluid 
are k=0.1-5 and ~=0.83. 

A numerical analysis of the two solutions shows that in the case where Eq. (ii) is 
used to calculate | in the region 0.4-<9<-1 for ~>_0.05, 6a<3%. When (i0) is used in 
the region 0<-9 < 0.4 the error reaches 11%, but the introduction of the constant factor s = 
0.921 into this expression also leads in the calculation of | to ~a < 3%. Thus, the use of 
(Ii) with 0.4<-~-<i and (i0) in the form 

y. (~) :  sM[t('y)l -'/ '  ~o~ (~ f Vf~,~)  for 0 ~ < 0 . 4  
0 

ensures a value of ~a < 3%. In the region 0.5-< ~-<i for i~0.05 in the calculation of | by 
the WKB method 6a < 0.5%. Figure 1 shows the curves for | obtained by the two methods. 

In the case of boundary conditions of the first kind it is important to know the heat 
flux on the channel wall. The high accuracy of the asymptotic solution when 9~0.5 should 
lead to a small error in calculation of the heat flux on the wall. The W~B method leads 
to the following expression for ~w = qwh/%(Tw -- To): 

qw(X ) -- 1.591qo_,[~,/a gf,/a exp - -  -~ e~x . 
n~O 

A comparison of (14) with the solution obtained by representation of Yn(Y) as a power 
series shows that when the W-KB method is used to calculate qw in the region k > 0.02, ~a < 1%. 
The series contained in (14) rapidly converges when ~ > 0.05. For instance, if only the 
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first two terms are taken, theerror is less than 1%. Since calculation by formula (14) 
gives slightly overestimated values within the limits of this error, the use of only the 
first term of the series when ~ > 0.05 ensures that 6a < 1%. Hence, for practical calcula- 
tions we can use the very simple formula 

qw(X) ~= 1.591-J- -i--[~/-~-~ exp _ Y8 ~ox~'" , ~o :=- -]-~-.'5~ 

Figure 2 shows plots of qw against channel length, calculated from formula (14). 

The curves corresponding to ~ =0 represent the relations @(0.i; ~) and ~w(~), calcula- 
ted without regard to the microstructure of the fluid.. As the figures show, in certain con- 
ditions allowance for the self-rotation of the particles of the microstructured fluid in the 
calculation of the temperature difference AT= IT - Twl and heat flux on the wall can lead 
to their considerable reduction. Similar results were obtained when Eq. (ii) was solved for 
a flow of micropolar fluid in a cylindrical channel. 

We can conclude from the above that, despite the asymptotic nature of the solution 
obtained by the WKB method, the calculated expressions for | ~w in the considered range 
of ~ are fairly accurate over the entire cross section of the channel. This indicates that 
the WKB method is of great promise for the investigation of steady convective heat transfer 
in a micropolar fluid. 

NOTATION 

To and Tw, temperatures of entrance section and wall of channel, respectively; dp/dx, 
pressure gradient; x~, x2, longitudinal and transverse coordinates, respectively (or x and 
y); Pe = 2v~h/a, Peclet number; v~, mean velocity of Newtonian fluid with viscosity ~ +~/2 in 
channel of width 2h; a, boundary condition parameter; 2h, width of channel; v x and Vz, non- 
zero components of velocity and microrotation of micropolar fluid; a and %, thermal diffu- 
sivity and thermal conductivity of fluid; ~, ~, and y, viscosities of micropolar fluid; qw, 
heat flux density on wall; Sn and Yn(~), eigenvalues and eigenfunctions of Sturm--Liouville 
problem; Cn, constants that can be determined by using orthogonality of eigenfunctions. 
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